| Geometry 1-2<br>Area              | UNIT 8 | Name:<br>Teacher: Per:                                                                                                                                                     |
|-----------------------------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| My academic goal for this unit is |        | <ul> <li>Check for Understanding Key:</li> <li>Understanding at start of the unit</li> <li>Understanding after practice</li> <li>Understanding before unit test</li> </ul> |

|    | LEARNING TARGETS                                                                            | u | How<br>nders | v is my<br>standi | ng? | Test<br>Score | Retake? |
|----|---------------------------------------------------------------------------------------------|---|--------------|-------------------|-----|---------------|---------|
| 8a | I can calculate the area of rectangles,<br>parallelograms, triangles, trapezoids and kites. | 1 | 2            | 3                 | 4   |               |         |
| 8b | I can calculate the area of regular polygons.                                               | 1 | 2            | 3                 | 4   |               |         |
| 8c | I can calculate an approximate area for irregular shapes.                                   | 1 | 2            | 3                 | 4   |               |         |
| 8d | I can calculate the area of circles.                                                        | 1 | 2            | 3                 | 4   |               |         |
| 8e | I can calculate the area of portions of circles.                                            | 1 | 2            | 3                 | 4   |               |         |
| 8f | I can use area to determine geometric probability.                                          | 1 | 2            | 3                 | 4   |               |         |
| 8g | I can calculate surface area of 3D figures.                                                 | 1 | 2            | 3                 | 4   |               |         |

What is the equation for calculating the area of a circle and why is the area of a circle calculated using this formula?

| DP/1                                                                 | CP/2                                                                                                       | PR/3                                                                                | HP/4                                                                                                      |
|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Developing Proficiency                                               | Close to Proficient                                                                                        | Proficient                                                                          | Highly Proficient                                                                                         |
| Not yet, Insufficient                                                | Yes, but, Minimal                                                                                          | Yes, Satisfactory                                                                   | WOW, Excellent                                                                                            |
| I can't do it and am not able<br>to explain process or key<br>points | I can sort of do it and am<br>able to show process, but not<br>able to identify/explain key<br>math points | I can do it and able to both<br>explain process and<br>identify/explain math points | I'm great at doing it and am<br>able to explain key math<br>points accurately in a variety<br>of problems |

# **Chapter 8 Conjectures**

| Title                            | Conjecture                                                                                                                                                                 | Diagram |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Rectangle Area<br>Conjecture     | The area of a rectangle is given by the formula, where <i>A</i> is the area, <i>b</i> is the length of the base and <i>h</i> is the height of the rectangle.               |         |
| Parallelogram<br>Area Conjecture | The area of a parallelogram is given by the formula, where <i>A</i> is the area, <i>b</i> is the length of the base, and <i>h</i> is the height of the parallelogram.      |         |
| Triangle Area<br>Conjecture      | The area of a triangle is given by the formula<br>, where <i>A</i> is the area, <i>b</i> is the length of<br>the base, and <i>h</i> is the height of the triangle.         |         |
| Trapezoid Area<br>Conjecture     | The area of a trapezoid is given by the formula, where <i>A</i> is the area, $b_1$ and $b_2$ are the lengths of the two bases and <i>h</i> is the height of the trapezoid. |         |
| Kite Are<br>Conjecture           | The area of a kite is given by the formula, where $d_1$ and $d_2$ are the lengths of the diagonals.                                                                        |         |

| Title           | Conjecture                                           | Diagram |
|-----------------|------------------------------------------------------|---------|
|                 | The area of a regular polygon is given by the        |         |
|                 | formula, where <i>A</i> is the area, <i>a</i> is the |         |
|                 | apothem, $s$ is the length of one sides and $n$ is   |         |
| Regular Polygon | the number of sides. The length of each sides        |         |
| Area Conjecture | times the number of sides is the perimeter, P,       |         |
|                 | so $sn = P$ . Thus, you can also write the formula   |         |
|                 | for area as $A = \_\_P$ .                            |         |
|                 | The area of a circle is given by the formula         |         |
| Circle Area     | , where <i>A</i> is the area and <i>r</i> is the     |         |
| Conjecture      | radius of the circle.                                |         |
|                 |                                                      |         |

## Additional Notes:

# Notes

# Notes

### Geometry 1-2 © 2018 Kuta Software LLC. All rights reserved. Practice: Area of Quadrilaterals & Triangles

## Find the area of each.





Find the missing measurement. Round your answer to the nearest tenth.



## Lesson 8.1 • Areas of Rectangles and Parallelograms



- **5.** Rectangle *ABCD* has area 2684  $m^2$  and width 44 m. Find its length.
- **6.** Draw a parallelogram with area 85 cm<sup>2</sup> and an angle with measure 40°. Is your parallelogram unique? If not, draw a different one.
- 7. Find the area of *PQRS*.







**9.** Dana buys a piece of carpet that measures 20 square yards. Will she be able to completely cover a rectangular floor that measures 12 ft 6 in. by 16 ft 6 in.? Explain why or why not.





AD = 18 cm, and BE = 10 cm. Find the

C

area of ABCDE.

R

### Geometry 1-2 © 2018 Kuta Software LLC. All rights reserved. Practice: Area of Regular Polygons & Circles

Find the area of each regular polygon. Round your answer to the nearest tenth if necessary.





18









Find the area of each.







15)



## Lesson 8.4 • Areas of Regular Polygons



**4.** In a regular *n*-gon, s = 4.8 cm,  $a \approx 7.4$  cm, and  $A \approx 177.6$  cm<sup>2</sup>. Find *n*.

- **5.** Draw a regular pentagon so that it has perimeter 20 cm. Use the Regular Polygon Area Conjecture and a centimeter ruler to find its approximate area.
- 6. Use a compass and straightedge to construct a regular octagon and its apothem. Use a centimeter ruler to measure its side length and apothem, and use the Regular Polygon Area Conjecture to find its approximate area.

**7.** Find the area of the shaded region between the square and the regular octagon.  $s \approx 5$  cm. r = 3 cm.



## Lesson 8.5 • Areas of Circles

| Name                                                                                        | Period                                     | Date |
|---------------------------------------------------------------------------------------------|--------------------------------------------|------|
| In Exercises 1–4, write your answers in terms of $\pi$ .<br><b>1.</b> If $r = 9$ cm, $A = $ | <b>2.</b> If <i>d</i> = 6.4 cm, <i>A</i> = |      |
| <b>3.</b> If $A = 529\pi$ cm <sup>2</sup> , $r = $                                          | <b>4.</b> If $C = 36\pi$ cm, $A =$         |      |
| In Exercises 5-8, round your answers to the nearest                                         | 0.01 unit.                                 |      |
| <b>5.</b> If $r = 7.8$ cm, $A \approx$                                                      | <b>6.</b> If $A = 136.46$ , $C \approx$    | ·    |
| <b>7.</b> If $d = 3.12, A \approx$                                                          | <b>8.</b> If $C = 7.85, A \approx $        |      |

For Exercises 9 and 10, refer to the figure of a circle inscribed in an equilateral triangle. Round your answers to the nearest 0.1 unit.

9. Find the area of the inscribed circle.





 $a \approx 4.04 \text{ cm}$ 

In Exercises 11 and 12, find the area of the shaded region. Write your answers in terms of  $\pi$ .

**11.** ABCD is a square.



**12.** The three circles are tangent.



### Geometry 1-2 © 2018 Kuta Software LLC. All rights reserved. Practice: Area of Sectors

## Find the area of each sector.





















## Lesson 8.6 • Any Way You Slice It

Name \_\_\_\_\_

## Period \_\_\_\_\_ Date \_\_\_\_

In Exercises 1–6, find the area of the shaded region. Write your answers in terms of  $\pi$  and rounded to the nearest 0.01 cm<sup>2</sup>.



### Geometry 1-2 © 2018 Kuta Software LLC. All rights reserved. Practice: Surface Area

Find the lateral area and surface area of each figure. Round your answers to the nearest hundredth, if necessary.































Find the lateral area and surface area of each figure. Round your answers to the nearest hundredth, if necessary. Leave your answers in terms of  $\pi$  for answers that contain  $\pi$ .



## Lesson 8.7 • Surface Area

| Name                                                                                                          | Period                                                                              | Date              |
|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------|
| In Exercises 1–8, find the surface<br>rectangles, and all measurement<br>to the nearest 0.1 cm <sup>2</sup> . | e area of each solid. All quadrilater<br>s are in centimeters. Round your a         | als are<br>nswers |
|                                                                                                               |                                                                                     | 3.                |
|                                                                                                               | <b>5.</b> Base is a regular hexagon.<br>$s = 6, a \approx 5.2, \text{ and } l = 9.$ | <b>6.</b>         |
| 11                                                                                                            |                                                                                     |                   |

**7.** Both bases are squares.



the largest single piece possible.

8. A square hole in a round peg

13

9. Ilsa is building a museum display case. The sides and bottom will be plywood and the top will be glass. Plywood comes in 4 ft-by-8 ft sheets. How many sheets of plywood will she need to buy? Explain. Sketch a cutting pattern that will leave her with



# Unit 8 • Challenge Problems

## 1. (Target 8a)

Sabrina wants to paint the walls (including the doors) and ceiling of the two bedrooms, the hall, and the living room of her apartment. A gallon of TJ Base Paint covers 325 sq. ft. and costs \$19.99. A gallon of ABOT Base Paint covers 400 sq. ft. and costs \$26.39. All the ceilings are 7 ft. high.

a. Which brand of paint is cheaper per square foot?

**b.** How many gallons of each would Sabrina need to buy? Show all your work.

c. Which is the cheaper brand to use for this job?

**d.** Explain the apparent contradiction between the answers to parts a and c.



## 2. (Target 8b)

 $\overline{AN}$  and  $\overline{CM}$  are medians.

**a.** If the area of  $\triangle ABC$  is 48 units<sub>2</sub>, what are the areas of  $\triangle AMC$  and  $\triangle CNA$ ? Explain.

**b.** Explain why the area of  $\triangle AMP$  is equal to the area of  $\triangle CNP$ .

**c.** The area of  $\triangle AMP$  is what fraction of the area of  $\triangle ABC$ ? Explain.



# Unit 8 • Challenge Problems

## 3. (Target 8c and 8e)

Raul ties his dog, Spot, to the side of a shed with a 20 ft. leash. He has a movable hook so he can secure the leash anywhere along the shed walls.

a. Over what area can Spot play if the leash is fastened at point A? If the leash is fastened at B? If the leash is fastened at C? For each case, make a sketch, with relevant measurements labeled, and show all your work.
b. Where should Raul secure the leash so Spot has maximum area? What is the maximum area? Make a sketch to illustrate your answer.



### 4. (Target 8a and 8e)

Imagine that you have 27 small cubes, each with edge length 1 cm.

**a.** The cubes are scattered on a table so that no cube is touching any other cube. What is the total surface area of all the cubes?

**b.** Arrange the cubes end-to-end to form a 27-cube "train." Make a sketch of the train. What is its surface area?

**c.** Next, arrange the cubes to form a set of steps, 3 cm wide. A 3-by-4 rectangle of cubes is on the bottom, a 3-by-3 rectangle of cubes is on top of that, and a 3-by-2 rectangle of cubes is on top of that. Make a sketch of the steps. What is the surface area of the steps?

**d.** Make a sketch showing an arrangement of 27 cubes with surface area 78 cm<sub>2</sub>.

e. Make a sketch showing an arrangement of 27 cubes with surface area 90 cm2.

**f.** What is the largest surface area you can make? What is the smallest surface area you can make? Describe how the cubes must be arranged to get the largest and smallest surface area.

# Unit 8 • Challenge Problems

## 5. (Targets 8c, 8d, 8e and 8g)

A cone is 16 cm high and has a base radius of 12 cm. A cut is made through the cone 4 cm from the vertex and parallel to the base. The discarded top is a cone with base diameter 6 cm and slant height 5 cm. The part that remains is a frustum with slant height 15 cm. A hole with radius 3 cm is drilled through the frustum, from the center of one base to the center of the other. The drilled frustum is then dipped in a vat of paint.

**a.** Sketch the original cone, the undrilled frustum, the discarded cone, and the drilled frustum. Label all relevant measurements.

**b.** Calculate the *exact* area of the painted surface of the frustum. Explain the steps in your calculation procedure.

#### **LESSON 8.1** • Areas of Rectangles and Parallelograms

**1.** 112 cm<sup>2</sup> **2.** 7.5 cm<sup>2</sup> **3.** 110 cm<sup>2</sup> **4.** 81 cm<sup>2</sup>

- **5.** 61 m
- 6. No. Possible answer:



**7.** 88 units<sup>2</sup>

#### **8.** 72 units<sup>2</sup>

**9.** No. Carpet area is 20 yd<sup>2</sup> = 180 ft<sup>2</sup>. Room area is (21.5 ft)(16.5 ft) = 206.25 ft<sup>2</sup>. Dana will be  $26\frac{1}{4}$  ft<sup>2</sup> short.

#### LESSON 8.2 • Areas of Triangles, Trapezoids, and Kites

| <b>1.</b> 16 ft                                           | <b>2.</b> 20 cm <sup>2</sup>                                  |
|-----------------------------------------------------------|---------------------------------------------------------------|
| <b>3.</b> $b = 12$ in.                                    | <b>4.</b> $AD = 4.8 \text{ cm}$                               |
| <b>5.</b> 40 cm <sup>2</sup> <b>6.</b> 88 cm <sup>2</sup> | <b>7.</b> 54 units <sup>2</sup> <b>8.</b> 135 cm <sup>2</sup> |

#### LESSON 8.3 • Area Problems

**1. a.** 549.5 ft<sup>2</sup>

**3.** Possible answer:

**b.** 40 bundles; \$1596.00

- **2.** 500 L
- \_\_\_\_







**4.** It is too late to change the area. The length of the diagonals determines the area.

### LESSON 8.4 • Areas of Regular Polygons

**1.**  $A \approx 696 \text{ cm}^2$  **2.**  $a \approx 7.8 \text{ cm}$ 

**4.** *n* = 10

**5.**  $s = 4 \text{ cm}, a \approx 2.8 \text{ cm}, A \approx 28 \text{ cm}^2$ 





**3.** *p* ≈ 43.6 cm

**6.** Possible answer (s will vary):  $s \approx 3.1$  cm,  $a \approx 3.7$  cm,  $A \approx 45.9$  cm<sup>2</sup>



7. Approximately 31.5 cm<sup>2</sup>: area of square = 36; area of square within angle =  $\frac{3}{8} \cdot 36 = 13.5$ ; area of octagon  $\approx 120$ ; area of octagon within angle  $\approx \frac{3}{8} \cdot 120 \approx 45$ ; shaded area  $\approx 45 - 13.5 \approx 31.5$  cm<sup>2</sup>

#### LESSON 8.5 • Areas of Circles

| <b>1.</b> $81\pi$ cm <sup>2</sup>       | <b>2.</b> $10.24\pi$ cm <sup>2</sup> | <b>3.</b> 23 cm                |  |  |
|-----------------------------------------|--------------------------------------|--------------------------------|--|--|
| <b>4.</b> $324\pi$ cm <sup>2</sup>      | <b>5.</b> 191.13 cm <sup>2</sup>     | <b>6.</b> 41.41 cm             |  |  |
| <b>7.</b> 7.65 cm <sup>2</sup>          | <b>8.</b> 4.90 cm <sup>2</sup>       | <b>9.</b> 51.3 cm <sup>2</sup> |  |  |
| <b>10.</b> 33.5 or 33.6 cm <sup>2</sup> |                                      |                                |  |  |
| <b>11.</b> $(64\pi - 128)$ square units |                                      |                                |  |  |

**12.**  $25\pi$  cm<sup>2</sup>

#### LESSON 8.6 • Any Way You Slice It

- **1.**  $\frac{25\pi}{12}$  cm<sup>2</sup>  $\approx$  6.54 cm<sup>2</sup>
- **2.**  $\frac{32\pi}{3}$  cm<sup>2</sup>  $\approx$  33.51 cm<sup>2</sup>
- **3.**  $12\pi$  cm<sup>2</sup>  $\approx$  37.70 cm<sup>2</sup>
- **4.**  $(16\pi 32)$  cm<sup>2</sup>  $\approx$  18.27 cm<sup>2</sup>
- **5.**  $13.5\pi$  cm<sup>2</sup>  $\approx$  42.41 cm<sup>2</sup>
- **6.**  $10\pi$  cm<sup>2</sup>  $\approx$  31.42 cm<sup>2</sup>
- **7.** r = 10 cm **8.**  $x = 135^{\circ}$  **9.** r = 7 cm

### LESSON 8.7 • Surface Area

- **1.** 136 cm<sup>2</sup> **2.** 240 cm<sup>2</sup> **3.** 558.1 cm<sup>2</sup>
- **4.** 796.4 cm<sup>2</sup> **5.** 255.6 cm<sup>2</sup> **6.**  $356 \text{ cm}^2$
- **7.** 468 cm<sup>2</sup> **8.** 1055.6 cm<sup>2</sup>

**9.** 1 sheet: front rectangle:  $3 \cdot 1\frac{1}{2} = 4\frac{1}{2}$ ; back rectangle:  $3 \cdot 2\frac{1}{2} = 7\frac{1}{2}$ ; bottom rectangle:  $3 \cdot 2 = 6$ ; side trapezoids:  $2\left(2 \cdot \frac{2\frac{1}{2} + 1\frac{1}{2}}{2}\right) = 8$ ; total = 26 ft<sup>2</sup>.

Area of 1 sheet =  $4 \cdot 8 = 32$  ft<sup>2</sup>. Possible pattern:



## Answers to Practice: Area of Quadrilaterals & Triangles

| 1) $35 \text{ cm}^2$    | 2) 83.2 yd <sup>2</sup>  | 3) 85.8 km <sup>2</sup> | 4) 33 km <sup>2</sup>   |
|-------------------------|--------------------------|-------------------------|-------------------------|
| 5) 30 in <sup>2</sup>   | 6) 50.4 in <sup>2</sup>  | 7) 5.6 $in^2$           | 8) 23.4 km <sup>2</sup> |
| 9) 28.71 m <sup>2</sup> | 10) 21.6 yd <sup>2</sup> | 11) 52.8 m <sup>2</sup> | 12) 64 mi <sup>2</sup>  |
| 13) 18.4 $cm^2$         | 14) 77.25 $cm^2$         | 15) 6.3 m               | 16) 2.2 ft              |
| 17) 5.4 cm              | 18) 7.1 ft               | 19) 9 ft                | 20) 8 km                |
| 21) 8.4 ft              | 22) 4.3 m                |                         |                         |

## Answers to Practice: Area of Regular Polygons & Circles

| 1) 1858.9                              | 2) 1089.9                | 3) 43.5                   | 4) 606.3                 |
|----------------------------------------|--------------------------|---------------------------|--------------------------|
| 5) 210.6                               | 6) 440                   | 7) 180.6                  | 8) 103                   |
| <ol> <li>36π km<sup>2</sup></li> </ol> | 10) $9\pi \text{ in}^2$  | 11) $100\pi \text{ in}^2$ | 12) $25\pi \text{ m}^2$  |
| 13) $64\pi \text{ m}^2$                | 14) $81\pi \text{ cm}^2$ | 15) $49\pi \text{ km}^2$  | 16) 121π mi <sup>2</sup> |

## Answers to Practice: Area of Sectors

| 1) | $\frac{169\pi}{4}km^2$          | 2) $\frac{931\pi}{6}$ ft <sup>2</sup>  | 3) $\frac{49\pi}{4}$ km <sup>2</sup>  | 4) $40\pi \text{ km}^2$               |
|----|---------------------------------|----------------------------------------|---------------------------------------|---------------------------------------|
| 5) | $\frac{867\pi}{4}\mathrm{cm}^2$ | 6) 120π in <sup>2</sup>                | 7) $\frac{525\pi}{8}$ ft <sup>2</sup> | 8) $\frac{845\pi}{12}$ m <sup>2</sup> |
| 9) | $\frac{1183\pi}{8}yd^2$         | 10) $\frac{363\pi}{8}$ mi <sup>2</sup> |                                       |                                       |

## Answers to Practice: Surface Area

1) 110 km<sup>2</sup>; 137 km<sup>2</sup> 2) 24 km<sup>2</sup>; 36 km<sup>2</sup> 3) 24 ft<sup>2</sup>; 42 ft<sup>2</sup> 4) 60 yd<sup>2</sup>; 78 yd<sup>2</sup> 5) 176 mi<sup>2</sup>; 231.2 mi<sup>2</sup> 6) 184 m<sup>2</sup>; 239.9 m<sup>2</sup> 7) 180 km<sup>2</sup>; 303 km<sup>2</sup> 8) 240 yd<sup>2</sup>; 363 yd<sup>2</sup> 12) 46.5 ft<sup>2</sup>; 57.25 ft<sup>2</sup> 9) 324 m<sup>2</sup>; 745.2 m<sup>2</sup> 10) 384 in<sup>2</sup>; 715.2 in<sup>2</sup> 11) 30.6 yd<sup>2</sup>; 37.6 yd<sup>2</sup> 14) 29.9 mi<sup>2</sup>; 39.9 mi<sup>2</sup> 15) 264 yd<sup>2</sup>; 374 yd<sup>2</sup> 13) 290.4 in<sup>2</sup>; 411.4 in<sup>2</sup> 17) 235.8 in<sup>2</sup>; 329.4 in<sup>2</sup> 16) 178.5 m<sup>2</sup>; 262.5 m<sup>2</sup> 18) 203.4 km<sup>2</sup>; 297 km<sup>2</sup> 20)  $240\pi$  cm<sup>2</sup>;  $440\pi$  cm<sup>2</sup> 19)  $12\pi$  ft<sup>2</sup>;  $30\pi$  ft<sup>2</sup> 21) 109.9π km<sup>2</sup>; 158.9π km<sup>2</sup> 22) 143.2π mi<sup>2</sup>; 207.2π mi<sup>2</sup>